博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
缓存架构设计细节二三事
阅读量:7023 次
发布时间:2019-06-28

本文共 2720 字,大约阅读时间需要 9 分钟。

hot3.png

本文主要讨论这么几个问题:

(1)“缓存与数据库”需求缘起

(2)“淘汰缓存”还是“更新缓存”

(3)缓存和数据库的操作时序

(4)缓存和数据库架构简析

一、需求缘起

场景介绍

缓存是一种提高系统读性能的常见技术,对于读多写少的应用场景,我们经常使用缓存来进行优化。

例如对于用户的余额信息表account(uid, money),业务上的需求是:

(1)查询用户的余额,SELECT money FROM account WHERE uid=XXX,占99%的请求

(2)更改用户余额,UPDATE account SET money=XXX WHERE uid=XXX,占1%的请求

640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1

由于大部分的请求是查询,我们在缓存中建立uid到money的键值对,能够极大降低数据库的压力。

 

读操作流程

有了数据库和缓存两个地方存放数据之后(uid->money),每当需要读取相关数据时(money),操作流程一般是这样的:

(1)读取缓存中是否有相关数据,uid->money

(2)如果缓存中有相关数据money,则返回【这就是所谓的数据命中“hit”】

(3)如果缓存中没有相关数据money,则从数据库读取相关数据money【这就是所谓的数据未命中“miss”】,放入缓存中uid->money,再返回

缓存的命中率 = 命中缓存请求个数/总缓存访问请求个数 = hit/(hit+miss)

上面举例的余额场景,99%的读,1%的写,这个缓存的命中率是非常高的,会在95%以上。

 

那么问题来了

当数据money发生变化的时候:

(1)是更新缓存中的数据,还是淘汰缓存中的数据呢?

(2)是先操纵数据库中的数据再操纵缓存中的数据,还是先操纵缓存中的数据再操纵数据库中的数据呢?

(3)缓存与数据库的操作,在架构上是否有优化的空间呢?

这是本文关注的三个核心问题。

 

二、更新缓存 VS 淘汰缓存

什么是更新缓存:数据不但写入数据库,还会写入缓存

什么是淘汰缓存:数据只会写入数据库,不会写入缓存,只会把数据淘汰掉

 

更新缓存的优点:缓存不会增加一次miss,命中率高

淘汰缓存的优点:简单(我去,更新缓存我也觉得很简单呀,楼主你太敷衍了吧)

 

那到底是选择更新缓存还是淘汰缓存呢,主要取决于“更新缓存的复杂度”。

例如,上述场景,只是简单的把余额money设置成一个值,那么:

(1)淘汰缓存的操作为deleteCache(uid)

(2)更新缓存的操作为setCache(uid, money)

更新缓存的代价很小,此时我们应该更倾向于更新缓存,以保证更高的缓存命中率

 

如果余额是通过很复杂的数据计算得出来的,例如业务上除了账户表account,还有商品表product,折扣表discount

account(uid, money)

product(pid, type, price, pinfo)

discount(type, zhekou)

业务场景是用户买了一个商品product,这个商品的价格是price,这个商品从属于type类商品,type类商品在做促销活动要打折扣zhekou,购买了商品过后,这个余额的计算就复杂了,需要:

(1)先把商品的品类,价格取出来:SELECT type, price FROM product WHERE pid=XXX

(2)再把这个品类的折扣取出来:SELECT zhekou FROM discount WHERE type=XXX

(3)再把原有余额从缓存中查询出来money = getCache(uid)

(4)再把新的余额写入到缓存中去setCache(uid, money-price*zhekou)

更新缓存的代价很大,此时我们应该更倾向于淘汰缓存。

 

however,淘汰缓存操作简单,并且带来的副作用只是增加了一次cache miss,建议作为通用的处理方式。

 

三、先操作数据库 vs 先操作缓存

OK,当写操作发生时,假设淘汰缓存作为对缓存通用的处理方式,又面临两种抉择:

(1)先写数据库,再淘汰缓存

(2)先淘汰缓存,再写数据库

究竟采用哪种时序呢?

 

还记得在《》文章(点击查看)里“究竟先写正表还是先写反表”的结论么?

对于一个不能保证事务性的操作,一定涉及“哪个任务先做,哪个任务后做”的问题,解决这个问题的方向是:

如果出现不一致,谁先做对业务的影响较小,就谁先执行。

 

由于写数据库与淘汰缓存不能保证原子性,谁先谁后同样要遵循上述原则。

640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1

假设先写数据库,再淘汰缓存:第一步写数据库操作成功,第二步淘汰缓存失败,则会出现DB中是新数据,Cache中是旧数据,数据不一致

 

640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1

假设先淘汰缓存,再写数据库:第一步淘汰缓存成功,第二步写数据库失败,则只会引发一次Cache miss

 

结论:数据和缓存的操作时序,结论是清楚的:先淘汰缓存,再写数据库。

 

四、缓存架构优化

640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1

上述缓存架构有一个缺点业务方需要同时关注缓存与DB,有没有进一步的优化空间呢?有两种常见的方案,一种主流方案,一种非主流方案(一家之言,勿拍)。

 

640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1

主流优化方案服务化:加入一个服务层,向上游提供帅气的数据访问接口,向上游屏蔽底层数据存储的细节,这样业务线不需要关注数据是来自于cache还是DB。

 

640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1

非主流方案异步缓存更新:业务线所有的写操作都走数据库,所有的读操作都总缓存,由一个异步的工具来做数据库与缓存之间数据的同步,具体细节是:

(1)要有一个init cache的过程,将需要缓存的数据全量写入cache

(2)如果DB有写操作,异步更新程序读取binlog,更新cache

在(1)和(2)的合作下,cache中有全部的数据,这样:

(a)业务线读cache,一定能够hit(很短的时间内,可能有脏数据),无需关注数据库

(b)业务线写DB,cache中能得到异步更新,无需关注缓存

这样将大大简化业务线的调用逻辑,存在的缺点是,如果缓存的数据业务逻辑比较复杂,async-update异步更新的逻辑可能也会比较复杂。

 

五、其他未尽事宜

本文只讨论了缓存架构设计中需要注意的几个细节点,如果数据库架构采用了一主多从,读写分离的架构,在特殊时序下,还很可能引发数据库与缓存的不一致,这个不一致如何优化,后续的文章再讨论吧。

 

六、结论强调

(1)淘汰缓存是一种通用的缓存处理方式

(2)先淘汰缓存,再写数据库的时序是毋庸置疑的

(3)服务化是向业务方屏蔽底层数据库与缓存复杂性的一种通用方式

 

 

转载于:https://my.oschina.net/u/3664884/blog/1810995

你可能感兴趣的文章
Centos7安装完毕后重启提示Initial setup of CentOS Linux 7 (core)的解决方法
查看>>
Codeforces Beta Round #9 (Div. 2 Only) A. Die Roll 水题
查看>>
swift和 oc 混编2-备
查看>>
2015-2016-2 《Java程序设计》 游戏化
查看>>
代码的组织机制
查看>>
html基础之 input:type
查看>>
json-lib简单处理json和对json的简单介绍
查看>>
SQL学习之用通配符进行数据过滤
查看>>
jquery checkbox选中、改变状态、change和click事件
查看>>
java joor 实现反射简单调用
查看>>
membership与成员资格
查看>>
Guava 8-区间
查看>>
自定义Spark Partitioner提升es-hadoop Bulk效率
查看>>
总结一些机器视觉库
查看>>
window 后台执行 redis(隐藏窗口)
查看>>
How to print 如何输出 int64_t,uint64_t的值 in C
查看>>
在CentOS Linux下部署Activemq 5
查看>>
并发读写缓存实现机制:高并发下数据写入与过期
查看>>
BeanUtils.copyProperties()方法和PropertyUtils.copyProperties()的区别
查看>>
Atitit 发帖机系列(7) 词法分析的方法attilax大总结)
查看>>